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The dynamics of an open quantum system coupled to an external reservoir is studied on the
basis of a recently proposed formulation of quantum statistical ensembles in terms of probability
distributions on projective Hilbert space. The previous result is generalized to include interaction
Hamiltonians of the form Zi A; ® B;, where A; and B; are operators acting on the Hilbert space
of the reduced system and of the reservoir, respectively. The differential Chapman-Kolmogorov
equation governing the dynamics of the conditional transition probability of the reduced system
is derived from the underlying microscopic theory based on the Schrédinger equation for the total
system. The stochastic process turns out to be a piecewise deterministic Markovian jump process
in the projective Hilbert space of the reduced system. The sample paths are derived and shown to
be similar to those of the Monte Carlo wave function simulation methods proposed in the literature.
Finally, a diffusion-noise expansion of the Liouville master equation is performed and demonstrated
to yield a stochastic differential equation for the state vector of the open system.

PACS number(s): 05.30.—d, 03.65.Bz, 42.50.Lc

I. INTRODUCTION

The dynamics of open quantum systems is convention-
ally described by means of the reduced density operator,
which is obtained from the density operator of the to-
tal system by tracing over the variables of the external
reservoir. In order to eliminate the reservoir variables
from the equation of motion, various approximations are
performed, leading to a closed equation of motion for the
density operator of the reduced system [1,2]. The most
famous approximation of this type is the Markov approx-
imation, which yields under some additional assumptions
the so-called quantum Markovian master equation [3-6]
generating a quantum dynamical semigroup [7-10] in the
space of statistical operators.

In recent years various interesting models have been
proposed that allow the formulation of the physics of
open quantum systems from a completely different point
of view. These models suggest that the dynamics of open
quantum systems may be described in terms of a stochas-
tic process on the Hilbert space pertaining to the reduced
system. The basic idea is then to represent the wave func-
tion of the reduced system as a random variable in the
Hilbert space and to interpret its covariance matrix as
the density operator. Consequently, the dynamics of the
time-dependent wave function is defined by a stochastic
process in Hilbert space that is constructed such that the
equation of motion governing its covariance matrix is just
the quantum Markovian master equation for the reduced
density operator.

It is clear that the basic principle just described does
not lead to a unique stochastic representation of the
reduced system dynamics. This is due to the obvious
fact that the dynamic equation for the two-point corre-
lation function of a stochastic process alone does not fix
uniquely this process. This is true even if the Marko-
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vian assumption is made. In fact, the most general form
for a Markov process on a given phase space consists of
a smooth deterministic time evolution, a discontinuous
jump process, and a diffusion process [11]. Accordingly,
the stochastic models discussed in the literature may be
subdivided into the class of diffusion-type processes with
continuous drift and the class of piecewise deterministic
jump processes.

The so-called quantum state diffusion model, for ex-
ample, belongs to the first type of models. Following
the work of Pearle [12], Gisin [13] and Gisin and Per-
cival [14] have developed this model, which is defined
by a stochastic differential equation for the state vec-
tor with nonlinear drift and multiplicative noise. This
stochastic differential equation is equivalent to a certain
(functional) Fokker-Planck equation [15] on the underly-
ing Hilbert space. The stochastic dynamics of the wave
function may also be described in terms of a stochastic
differential equation with linear drift [16].

In contrast to these diffusion-type processes there ex-
ists the possibility to represent the dynamics of the open
system wave function as a stochastic process whose real-
izations are piecewise deterministic paths [17]. The first
such method has been developed by Dalibard, Castin,
and Mglmer [18] and applied to some simple models of
quantum optics. This was a major step forward since
it offered a natural theoretical description of quantum
jumps that have been distinctly observed in experiments
with individual ions in radio-frequency traps [19-21] and
with single terrylene molecules [22] (see also the review
article [23] on quantum jumps by Cook). A short time
later Dum, Zoller, and Ritsch [24] suggested a Monte
Carlo simulation method of the quantum master equa-
tion, which is essentially the same algorithm as that of
Dalibard, Castin, and Mglmer, and formulated it in a
most general form in Ref. [25]. Independently, the idea of

428 ©1995 The American Physical Society



52 STOCHASTIC DYNAMICS OF QUANTUM JUMPS 429

complementary unravelings of the quantum master equa-
tion in terms of different types of stochastic processes has
been developed by Carmichael [26]. Wiseman and Mil-
burn [27] have traced back three different unravelings of
the quantum optical master equation to three different
measurement schemes, i.e., to direct photodetection, ho-
modyne, and heterodyne detection. For the example of a
two-level atom, they have formulated the corresponding
stochastic processes by means of differential Chapman-
Kolmogorov equations on the Bloch sphere. In Ref. [28] a
stochastic process for the open system wave function has
been formulated by means of a Liouville master equation
for the corresponding probability distribution. Finally, a
piecewise deterministic stochastic process has been con-
structed by Blanchard and Jadczyk [29] describing the
coupling of a quantum system to a classical system.

The great variety of these approaches clearly demon-
strates, as mentioned before, that it is not possible to
obtain a unique stochastic representation of the reduced
state vector only on the basis of the equation for the re-
duced density matrix. The question then arises whether
it is possible to derive a unique stochastic process for
the open system dynamics directly from the underlying
microscopic theory without referring to the density op-
erator description. It is the aim of the present paper to
show that this is indeed possible. For a special case this
derivation is given in [30], whereas a short exposition of
the method is outlined in [31].

In Sec. IT we shall first develop a formulation of quan-
tum ensembles in terms of probability distributions on
projective Hilbert space. This formulation provides a
classical statistical theory on the phase space that is given
by the space of rays of the Hilbert space of the system
under study. Within this formulation the dynamics of
closed systems is given by the Liouville equation, which
describes the unitary flow corresponding to Schrédinger’s
equation and is a first-order functional differential equa-
tion for the probability distribution. Moreover, as will
be shown, the combination of two subsystems and the
reduction of a system to one of its subsystems may be
defined in terms of probability distributions on the pro-
jective Hilbert spaces of the corresponding systems.

On the basis of this formal setting we shall derive in
Sec. IIT an exact equation for the conditional transition
probability of the reduced system by starting from the
Liouville equation for the total (closed) system. Em-
ploying the Markov approximation of classical probabil-
ity theory, we then show that the conditional transition
probability obeys a differential Chapman-Kolmogorov
equation that defines a unique stochastic Markov pro-
cess in projective Hilbert space. This Markov process
is, in fact, a piecewise deterministic jump process. The
continuous flow is described by the Liouville part of
the Chapman-Kolmogorov equation corresponding to a
nonlinear, norm-preserving Schrodinger-type equation,
whereas the jump process is defined in terms of a gain-
and-loss master equation for the probability distribution
of the reduced system. Furthermore, it is shown that
the realizations of the stochastic process correspond es-
sentially to the realizations generated by the algorithms
of the Monte Carlo wave function simulation methods

mentioned above.

We investigate furthermore the diffusion approxima-
tion of the differential Chapman-Kolmogorov equation.
It is shown that, under certain conditions, the differen-
tial Chapman-Kolmogorov equation admits an asymp-
totic expansion, which yields a functional Fokker-Planck
equation. The latter is then transformed to a stochastic
Schrodinger-type equation that is of the same form as
that of the quantum state diffusion model.

Finally, in Sec. IV we summarize our results.

II. PROBABILITY DISTRIBUTIONS
ON PROJECTIVE HILBERT SPACE

In this section we shall develop a general formal setting
for the description of ensembles of quantum systems in
terms of probability distributions on the underlying pro-
jective Hilbert space. In Sec. II A we deal with ensem-
bles of closed quantum systems and introduce the basic
notions of probability theory on Hilbert space. In partic-
ular, we shall formulate three postulates that imply that
these probability distributions are, in fact, distributions
on projective Hilbert space. In Sec. II B we derive a kind
of tensor product for probability distributions that gives
the probability distribution of a system that is combined
from two subsystems. Furthermore, a reduction formula
is constructed that defines the probability distribution
of a reduced system in terms of the distribution of the
total system. These expressions will enable us to derive
in Sec. III the stochastic process of the reduced system
dynamics.

A. Closed systems

Consider a closed quantum mechanical system S, the
states of which are given by wave functions 3 in some
Hilbert space H. We write ¢ = 1(x), where = denotes
a complete set of quantum numbers of the system under
study. The scalar product on H is written as

(Wlg) = / dz $* (2)p(z) (1)

and the corresponding norm is denoted by ||¢|| =
()2,

Assume that we have an ensemble that consists of a
large number of copies of the system S each member of
which is described by its own wave function. This ensem-
ble may be characterized by a probability distribution on
the Hilbert space H in the following way. The functional
volume element on H is defined by

DyDy* = || dRev(2)]d[Imy ()]
=] ;@i (), @

where Rety(z) and Imy(z) are the real and the imagi-
nary part of 9(z), respectively, and the product [], ex-
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tends over all possible values of z, e.g., over all points
of position space. The probability density P[] corre-
sponding to the above ensemble may then be introduced
by defining P[] Dy Dvy* to be the probability of finding
the system in the volume element D1 D1* around . It
should be clear that in the case of an infinite-dimensional
Hilbert space P[¢] is a functional on Hilbert space and
(2) is a functional measure. From a mathematical point
of view, our presentation will be rather formal. However,
we remark that a mathematically rigorous definition of
probability measures on Hilbert space and the construc-
tion of the underlying Borel algebra has been given in a
series of papers by Bach [32] (see also Ref. [33)]).

It is important to note that the measure (2) is invariant
with respect to linear unitary transformations U:H —>
H. This fact may be expressed by the equation

S[UY] = d[4] , (3)

where

8[¥(2)] = [] 6(Rev(2))é(Imy(=)) (4)

denotes the functional é function on the Hilbert space H
[6() is the ordinary 4 function]. According to the general
principles of quantum mechanics, the physical state of a
system S is completely described by a normalized wave
function and wave functions that differ by a phase factor
are equivalent. It is thus natural to require that P[i]
fulfills the following three postulates:
(i) P is normalized

/ DYDY Ply] =1; (5)

(ii) the probability distribution is concentrated on the
unit sphere in Hilbert space defined by (|¥) = ||¢||? =
1, that is, there exists a functional Q[v] such that

P[] = &(|14ll - 1)Q[¥] 5 (6)

(iii) the probability distribution does not depend upon
the phase of the wave function, i.e., we have for all ¢ €
[0,2m)

Ple**y] = P[y] . @

A representation of the projective Hilbert space is ob-
tained by taking the unit sphere in ‘H and by identifying
those points on this sphere that differ by a phase factor.
Thus, by conditions (6) and (7), P[] can in fact be re-
garded as a probability density on the space of rays, that
is, as a probability density on projective Hilbert space.

In terms of P[¢] the expectation value of any physi-
cal observable represented by a self-adjoint operator A
is defined by the expectation of the quantum mechanical
expectation value

(4) = ((4]w))
= / DyDy* / de ¢*(2)A%(@)P[Y] . (8)

We now turn to the description of the dynamics. We

require that for the closed quantum system under consid-
eration each member of the ensemble evolves according
to the Schrodinger equation

.0y

igy = HY, (9)
where H is the Hamiltonian of the system and choosing
appropriate units we have assumed /& = 1. By the intro-
duction of an initial probability distribution Pp[t], which
describes the initial state of the ensemble, 1 becomes a
deterministic Markov process that is governed by a Liou-
ville equation. Denoting the time-dependent probability
distribution by P = P[%,t] we write

Ply,t] = / DyoDy; 8le~ 4o — $]Polho] . (10)

This equation expresses the fact that any initial o
drawn from the initial distribution P, evolves accord-
ing to Schrédinger’s equation. Using (3) we obtain from
Eq. (10) by integrating over g

P[4, t] = PoleHty] . (11)

Differentiating (11) with respect to time and using the
fact that H is self-adjoint, we find the differential form
of the Liouville equation, which is a first-order functional
differential equation for the probability distribution:

8 ) sP . 6P
sPwt=i [ dm{WH’”‘”)“p @ |

(12)
where §/6¢(z) and §/6¢*(x) are functional Wirtinger

derivatives. Since the linear time-evolution operator
exp(—:Ht) is unitary, it is easily seen that the Liou-
ville equation (12) preserves the basic conditions (5)—(7),
i.e., if Po[4] is a probability density on projective Hilbert
space so is P[y,t] for all ¢ > 0.

Another concept that will be important in the follow-
ing sections is provided by the interaction representation
of the time-dependent probability distribution on Hilbert
space. Assume that the total Hamiltonian takes the form

H=H,+ Hj, (13)

where H, describes some free evolution and H; denotes
the interaction Hamiltonian. We define the probability
distribution P[¢,t] in the interaction representation by

Py, t] = Ple i Holtto)y ] . (14)

At time t = to the Schrédinger and the interaction rep-
resentation coincide, that is, we have P[v,to] = P[4, to].
The time evolution in the interaction representation is
therefore given by

P[4, t] = P[U} (¢, t0)9, to] , (15)

where Uy (t,to) is the time-evolution operator in the in-
teraction picture.



B. Combination and reduction of systems

This subsection is devoted to a formulation of the com-
bination of statistically independent subsystems and of
the reduction of a system to one of its subsystems in
terms of probability distributions on projective Hilbert
space. The physical situation we have in mind is the fol-
lowing one. Suppose that we have two systems S; and
S2 with corresponding Hilbert spaces #; and H,. Wave
functions in #{, are written as ¢, (x1) and wave functions
in H, are denoted by 2(z2). Furthermore, throughout
the paper (unless stated otherwise) we use the convention
that all quantities that refer to system S; carry an index
i, where i = 1,2. For example, (|)> denotes the scalar
product on H; and || ||; is the norm in H;. According to
the general principles of quantum mechanics, the Hilbert
space H underlying the combined system S = S; + S3 is
given by the tensor product

H=H,13Hs. (16)
We first assume that we have two statistically inde-
pendent subsystems S; and S described by their distri-
butions P;[;] and P[y2], respectively. The probability
density P[y] for the wave function ¢ € H is then ob-
tained by averaging over all possible ways to represent 1
as a product ¥ = 1,12, that is, we have the equation

P[] = (P1 ® P2)[¥]

- / Dy: Dy / D2 DY 8 — hatba] Py [thn]

x Pa[t2] (17
where [1] denotes the Dirac measure on H [see Eq. (4)].
This expression may be called a tensor product of prob-
ability distributions. It implies that for any self-adjoint
operator A on H of the form A = A; ® A», the following
equation holds:

(A)p,oP, = (A1)p (A2)P; , (18)

where the probability distributions by which the differ-
ent expectation values are defined have been indicated
as indices of the angular brackets. Equation (18) means
that for statistically independent systems .S; and S the
expectation value in the combined system S of any prod-
uct of operators is equal to the product of the expectation
values of §; and S;. In order to prove Eq. (18) we in-
sert the definition (17) for the tensor product into the
expression (8) for the expectation value of A to obtain

(A)pior, = / DyDy* / D¥.DY} f Dy, D3 (] Al)

X8[th — 12| Pi[v1] Pa[v2] -
On integrating over 3 we find

(19)
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(A) P, = / D¢, DY} / Dy2Dy;
X (Y192 A1 @ Az|Y192) Pi[1)1] Pa[1h2]
- ( / Dy Dy} <¢11A1|¢1>1P1[¢1])

x (/ Dy D} (1/)2lA2|1/’2)2P2[1/12]) )

which is identical to Eq. (18).

Let us check whether the basic conditions (5)—(7) are
fulfilled for the tensor product. First, condition (5) fol-
lows from Eq. (18) by setting A; = A; = 1, where 1
denotes the identity operator on the respective Hilbert
spaces. Condition (6) is obvious from the fact that P[y]
is nonzero only if 1 is the product of two normalized wave
functions. Finally, also condition (7) is fulfilled since on
using (3) for the unitary transformation given by the mul-
tiplication with the phase factor exp(i¢) we obtain

Ple*y] = / Dy, Dy} / DDy 8[y — e~ 19
X Py [11] P2 [42]
- / Dy, Dy} / Dpa D3 8[p — 1v2]

x Py €41 Pa[92]

and thus P[v] is phase invariant if P[] is so.

Let us turn to the reduction of a system to one of its
subsystems. Given a probability distribution P[1] for the
combined system S on #, the reduced probability distri-
bution P;[t¢1] on #, for the system S; can be obtained
as follows. If the total system S is in a pure state ¢ € H,
quantum mechanics tells us that the reduced system S;
can be described by a mixture of the normalized states
(in #,1) given by

Xal¥](@1) = wa V2] / dzy 9%(z2)0(w1,22)  (20)

with corresponding weights

2
wa["p] = /dwl /dﬂfz <p;($2)1/1(:c1,m2) ) (21)
where {p,} is a complete orthonormal basis of Hz. Thus,
in the most general case, the reduced probability distri-
bution on H; is obtained by averaging over the probabil-
ity distribution of the total system leading to the expres-
sion

Pilr] = [ DUDY" S walt] b1 [xal#] - 2] PI¥)

(22)

where 61 [v1] is the Dirac measure on the Hilbert space H;
of the reduced system. It should be clear that the reduced
probability distribution (22) depends on the choice of the
basis po. This dependence can, however, be removed by
integrating the right-hand side of Eq. (22) over the group
U of unitary transformations U:H, — Ho and dividing
out a normalization factor N, that is, by replacing the
above reduction formula by
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Piln] = /u DU / DYDY 3 waly]
xSilxal¥] —n:IPIA®U)Y].  (23)

In order to keep things as simple as possible we will not
use here this basis-invariant form.

Again, it is easy to check that the basic conditions (5)-
(7) are fulfilled for the reduced probability distribution
provided they are satisfied for the distribution of the total
system. Furthermore, we have for any operator A; acting
on Hi:

(A1)p, = (41©1)p . (24)

In order to prove this relation we write the left-hand side
explicitly as

(4)p, = [ DDyt [ dos bi(en) drt (o) Pl
- / Dy Dy / DyDy* P[y]
x / doy ¥} (1) A1 (1)
x 3 waltilxald] = i

On integrating over v¥; we find

(e, = [ DsDYPIY) [ dor 3 waldls (o) Arxalbl(a)

= /D¢D¢*P[¢] /dml dzy dzfy ¥*(z1,72)Ax (Z wa(wg)cp;(m'z)) P(z1,5)

- / DyDy*Ply] / dzy day §* (21, 22)(A1 ® 1)9(w1, 22)

= <A1 ®1>P )

where in the penultimate step the completeness (in Hz)
of the set {¢,} has been used.

Finally, we mention the following fact (the proof can
be found in Ref. [30]). Suppose that we have given two
distributions P; and P, on their respective Hilbert spaces
and that we form the tensor product P = P; ® P, ac-
cording to Eq. (17). Applying then the reduction formula
Eq. (22), the original distribution P; is recovered. Thus
the above equations yield a consistent description of the
combination and the reduction of quantum systems in
terms of probability distributions on Hilbert space.

III. REDUCED SYSTEM DYNAMICS AS
STOCHASTIC PROCESS IN PROJECTIVE
HILBERT SPACE

In this section we shall investigate the dynamics of an
open system that is coupled to an external reservoir. We
start from a microscopic representation of the dynamics
by means of the Liouville equation for the probability
distribution of the total system. Employing the basic
principles formulated in Sec. II, it is then possible to
derive within the Markov approximation an equation of
motion for the time-dependent probability distribution
pertaining to the reduced system. This derivation leads
to a unique stochastic process in the projective Hilbert
space of the reduced system.

A. Derivation of the differential
Chapman-Kolmogorov equation

In the following we use the same notation as in Sec.
IIB. The system S; (Hilbert space H;, wave functions

[
1) is considered to be the system of interest (simply re-
ferred to as the system), whereas S, (Hilbert space #,,
wave functions 1) is the external reservoir. The Hamil-
tonian H of the combined system S acting on the Hilbert
space H = H; ® H. is written as H = Hy + Hy, where
Hj is the interaction Hamiltonian and

Ho=H,®1+1® H, (25)

represents the free dynamics of the two subsystems S;
(Hamiltonian H;) and S; (Hamiltonian H,). The most
general interaction Hamiltonian H takes the form

H[ZZA,;@B,‘, (26)

where A; and B; are operators acting on H; and Hq,
respectively. In order to simplify the presentation we
assume in the following that the operators A; are eigen-
operators of H; (which can always be achieved) with a
discrete, nondegenerate spectrum w;. This means that
we assume that the interaction Hamiltonian in the inter-
action picture can be written as

Hi(s) = e'Hos He tHos = Zei“""Ai ® Bi(s), (27)

i

where B;(s) = exp(iH3s)B;exp(—iHzs) and w; # w;
for ¢ # j. Furthermore, we require that the diagonal
elements of B; in the H; representation vanish.

The external reservoir is described by a probability
density Ps[v2] on H, given by

2m
Palal = [ 2 padalpa -l (28)
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where {¢4} is an orthonormal eigenbasis of Ha, Hapo =
EaPa; and po > 0, > pa = 1. Thus Py[1),] represents
a probability density that is concentrated on the eigen-
states ¢, of Hy with corresponding weigths p, and is
constant along rays exp(i¢)y,. The latter property im-
plies that P, is a stationary solution of the Liouville equa-
tion (12) for the reservoir.

We now fix an arbitrary initial time ¢, and a positive
time interval 7, writing ¢t = to+7. According to Eq. (15),
the probability distribution P [¥,t] in the interaction rep-
resentation is given by

Py, t] = Ple™*HoTy t] = P[U}(t,t0)9, to] - (29)

The interaction picture time-evolution operator reads

Us(t, to) = T exp (—i /0 i dsHI(s)) , (30)

where Hj(s) is defined by Eq. (27) and 7 indicates
time ordering. Assuming the initial condition P[t,%¢] =
Py [1/)1, to] ® P [’d)z], we find from Eq. (29)

Py, t] = /D"Z’ID"»Z; /Di/;zDJ’; é [U}(t’ to)y — 1/;11/32]
><P1{1;1, to]Pa[v2] . (31)

The reduced probability distribution P; [%1,%] in the in-

teraction picture in then obtained by applying the re-

duction formula (22) to Eq. (31). On using the reservoir
distribution (28) we have

P1[¢17t] = /D"Z;ID"ZI T[¢11tl¢~17t0]P1[1Z17 tO] ) (32)
where the functional kernel T is given by

T[41,t|1, to]

2 d¢ i, —1/2 7
= o > wappp 01 [e Wog' "Lapthr — 1/’1] - (33)
0 @,

For any pair (o, 3) the linear operator Log:H1 — H;1 is
defined by

Logti(z1) = /dwz on(22)Ur(t, to) 1 (1) pp(z2) (34)
and

Wap = || Lapta [}
E/dml

Note that we have choseu the eigenbasis ¢, of H, in
the reduction formula (22). This choice is justified by the
following. We have transformed the probability distribu-
tion to the interaction representation and will transform
back to the Schrédinger representation later on. The

2

/ dzy 2 (x2)Ur(t, to) 1 (z1)pp(z2)
(35)

exact dynamics of the reduced probability distribution
turns out to be unaffected by these transformations if
the basis entering the reduction formula is identical to
the eigenbasis of the Hamiltonian of the reservoir.

Obviously, the kernel T'[t)1,t|11,to] can be interpreted
as the conditional probability density for a transition
from the ray e*®1; to the ray e*#1; during the time in-
terval [to,t] under the condition that at time to the ray
e*®), is given. Since > o Wap =1 and lim,_,q wag = dap
it is easy to verify that

/ DYDY} Tl tldasto] = 1 (36)

and

27
}_i_ff})T[?/’l,to + "'|1/;17t0] = /0 g%‘sl [eid"‘Z’l - ¢’1] . (37)

These equations express the fact that the total probabil-
ity for a transition to any state is equal to 1 and that at
time to the ray e*®, is given. Note that by definition
the functional kernel T'[v1,t|11, to] acts on phase invari-
ant distributions that are concentrated on the unit sphere
in H;. Thus one can always assume that ||¢1||; = 1 and
in the following we may omit the integration over ¢ in
Eq. (33), keeping in mind that we have for all ¢ € [0, 27)

T[e**41, 8|31, to] = Tlths, t|e?eh1, to] = T[th1, 2|1, to] -
(38)

Up to now everything is exact. However, the expres-
sion that is obtained for the conditional transition prob-
ability T involves, of course, the reservoir variables. In
order to eliminate the latter we now invoke the Markov
approximation. To this end, it is assumed that there ex-
ists a time scale 7 such that 75 < 7 < 75, where 75
is of the order of the reservoir correlation time and 7g
is of the order of the relaxation time of the reduced sys-
tem. The condition 75 < 7 implies that after a time
interval of order 7, any reference to the precise initial
value at time to has been wiped out and that, therefore,
at time t = to + 7 the conditional transition probabil-
ity T takes on the same form as at time ¢, (random
phase approximation). In other words, it follows that
the wave function ; of the reduced system represents a
stochastic Markov process (in the interaction represen-
tation) that is completely defined in terms of the condi-
tional transition probability T'[t)y,3|t1,t,] for arbitrary
times t; > t;. On the other hand, in view of the second
condition 7 K 7g it suffices to study, once the reservoir
variables have been eliminated, the short-time behavior
of the conditional transition probability T+, t2|¥1,t1].

Employing second-order perturbation theory (weak
coupling assumption) we obtain

Lap =bap+ ) figAi + > g5 Al 4; (39)
i B

and
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Wap =8ap Q1= Y O filafig (1Al A;1d1)1

ij o

+ D et AL A 1), (40)

.3

where we have defined the quantities
ciﬁ = —i_/(; dseiwis(‘palBi(s)l‘Pﬁl)‘b (41)
T T—38
R A
0 0

X {palB(s+5")B;(s)lpp)2 - (42)

Note that, since the diagonal elements of B; in the H,
representation are assumed to vanish, we have fi, = 0
for all 7 and . We decompose the conditional transition
probability 7' into a diagonal part Ty and a nondiagonal
part T, as

T[1,t|91, to] = Talth1, |1, to] + Tnlt1, tlh1, to] , (43)

where

Ty = Zwaapa(sl [w;al/zLaa'Zl — 1], (44)
T, = Z WapsPadi [w;ﬁl/zLagTA — 1] . (45)
a#f

As will be demonstrated next, T; and T,, exhibit a differ-
ent short-time behavior corresponding to a deterministic
drift and a discontinuous jump process, respectively.

Equation (44) may be interpreted as follows. For each
« the transition 1/;1 — 11 occurs within the time interval
[to,t] with probability waePo. Since the size of these
transitions becomes infinitesimally small for infinitesimal
7 [see Eq. (39)] it is justified to replace the whole set of
these possible transitions by a single transition given by
the weighted sum

P1 — P = Zpaw;al/zLaa'l/;l (46)

with corresponding transition probability ) wWaaPa-
This means that we approximate (for 7 small on the time
scale of the system dynamics) the diagonal part of the
conditional transition probability by the expression

Ta = (Z waapa> 81 [Zpaw;i/zLan)l — 1| - (47)

It is shown in the Appendix that for 75 < 7

Lij = Y foafhaPa = T7:0i; (48)
o o
and hence
D WaaPa 173 vi(th| Al Aili1): . (49)

Similarly, we find to second order in the interaction
;paw;al/zLaa ~1+ % zi:'Yi<"/;11AIAi|1Z1>1
+3° 3 g Al Aipe . (50)
ij a
In the Appendix it is shown that for 75 <« 7 we have
Tij=) g8.pam~-7 (%'y,- + zS) i, (51)
a

where the v; are real and non-negative and the S; are
real [10]. Thus we find

T ~ ~
Ea:paw;;ﬂLaa ~1+ 3 zi:’)’i ((¢1|A;‘Ai|¢1)1 - A!Ai)
—iry_ S Al4; . (52)

This finally yields the following expression for the short-
time behavior of the diagonal part of the conditional tran-
sition probability:

Ta = {1 - TZ'Yi("leA;!AiI";Ih}
i {14 ] S (et ation - ala)

—ir Y SiA,TAi}zZI - 1,/11] . (53)

On using Eq. (39) and (40) we obtain for the nondiag-
onal part (45) to leading order

To =Y | Y finfls lAl Al

B \ i
> flgAith
xpg b | ——=———— — 1| - (54)
12 fapAitrlly
2
According to Eq. (41) we have
5 e—i(eg —eq—wi)T __ 1
o = (0ol Bilos)z - (55)

EB —Ea — W;

Thus the secular terms in the sum over 7 in the argument
of the functional é function in Eq. (54) are precisely those
terms that fulfill the energy conservation eg = €4 + w;.
Recall that we are considering the interaction time 7,
which is large (on the time scale of the reservoir) but
finite. Consequently, we have a finite energy uncertainty
A of order A ~ 1/7. As mentioned before, we assume
that the frequency spectrum w; is nondegenerate. We
now impose the additional assumption that for times of
order 7 the energy intervals

I = [w,- - A,w; + A] (56)
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do not overlap and are well separated. Physically, this
means that for interaction times of order 7, the corre-
sponding energy uncertainty is much smaller than the
differences between the frequencies w;. In other words,
within interaction times of order 7 it is possible to iden-
tify uniquely that interaction term that contributes to a
given transition of the reservoir. Note that the very same
assumption w; — w; > 1/7 is needed for the determina-
tion of the correlation functions (see the Appendix). It is
therefore justified to take into account in (54) only those
terms (a, 3) that satisfy the condition

€3 — €q € Iy, (57)

for some k. If this condition is fulfilled the kth term in
the sum over ¢ in the argument of the § functional in
Eq. (54) dominates and, due to the normalization factor,
the argument of the functional § function in (54) becomes

fas AMZ& _
|fasl | Axd1]lx

Since the first factor is a pure phase factor it can be
omitted by invoking the phase invariance of the transi-
tion probability [see Eq. (38)]. In other words, this factor
is irrelevant since we are working in projective Hilbert
space. Thus we see that the argument of the § func-
tional becomes time independent. We emphasize that it
is precisely this time independence that ensures that the
J

Y1 (58)

T2, t|P1,t0] = {1 _TZ’Yi<1/;1!AZAiI"/;1>1}

short-time behavior of the conditional transition prob-
ability yields a differential Chapman-Kolmogorov equa-
tion leading to a Markovian jump process. Note that the
use of a projective Hilbert space enters the argument in
an essential manner.

Summarizing these arguments we find for the non-
diagonal part of the conditional transition probability

~ ~ Ay
Tom > TEW|AlA;|d1)1 61 | = — 1| , (59)
Z:k d ! [|Axt1]l1
where
th= > fiufispe. (60)

eg—€ea €l

It is shown in the Appendix that under the conditions
explained above

F,I;j ~ ’T’y,-&ij(sik . (61)
Hence we find

Ay
_— . (62
e «pl] (62)

Combining Egs. (53) and (62) we finally obtain the fol-
lowing short-time behavior of the conditional transition
probability:

T, = TZ%-(1/;1|AIA,~|1/~)1)1 01

8 {1 + 23w (Walalaifdo)s — Ala) —ir Y siA:-‘Ai} - %]
~ = Ay
ROAVAYY 6y | L ) 63
+‘r;’7 (1/11| |¢1)1 1 [I|Ai¢1||1 1/)1] ( )

As can be seen from this expression, the short-time behavior of the conditional transition probability has in fact the
appropriate form that leads to a differential Chapman-Kolmogorov equation. The second term represents the gain
term of a discontinuous jump process whereas the first term exhibits the short-time structure of a deterministic flow
and of the loss term corresponding to the jump process. Note that the exact relations (36) and (37) remain true for
the approximate expression derived above.

Our final step consists of transforming to the Schrédinger picture and deriving from the above short-time structure
of the conditional transition probability the equation of motion for the reduced probability distribution P;[y;,t]. On
using Egs. (63) and (32) we obtain to first order in 7

Py[¢1,t0 + 7] — Pi[h1, t0] = ——%/dﬂh {31(2—1 Z (’Yi(1/’1|A:-'Ai|1/)1)1 - 'YiA:'rAi - 2'1:SiAIAi) P1Py [y, to] + c.c.}

+7 [ DIDGT {Wis 1Pl to] ~ W] Prlin, to]} (64)

[

where c.c. means complex conjugated and we have intro-
duced the transition functional

Wp1ld1] = > ¥illAidhallf 61 [

In the Schrodinger representation the reduced probabil-
ity distribution P;[11,t] on the Hilbert space #; of the
Aty reduced system is given by
s 1/;1:| . (65) .
[|Asva]l1 Py[41,t] = Pi[etHrmy, 1] . (66)
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Inserting this equation into Eq. (64), dividing by 7, and
performing the limit 7 — 0 finally yields the Liouville
master equation for the probability distribution P; [+, ]
of the reduced system:

Pl["»blvt] /dml{&‘/) ( )G(¢1)($1)
5¢*( )[G(¢1)] ((L‘1)}P1[’l/)1, ]
+ / D%D&;{W[«plwl]ﬂ[&l,t]

—W[1/31|¢1]P1[¢1,t]} : (67)

Here we have introduced the nonlinear and non-
Hermitian operator G:H; — H; defined by

G(¢1) = Higpr + %Z%HAH/’le% ) (68)

where the linear, non-Hermitian operator H, is given by

_ g ata.
1=Hy+hy — §Z%AiAz . (69)

H 1 is made up of three parts: the free Hamiltonian H; of
the system, a Hermitian part h; = ), S,-AIA,- induced
by the coupling to the reservoir (Lamb shift), and a non-
Hermitian part describing dissipation of energy into the
reservoir degrees of freedom [34].

As is easily verified, the above Liouville master equa-
tion (67) preserves the basic conditions formulated in
Sec. IT A, i.e., normalization, concentration on the unit
sphere in Hilbert space, and phase invariance. Thus it
uniquely defines a stochastic process on the projective
Hilbert space of the reduced system.

Moreover, we note that the Liouville master equation
is invariant with respect to unitary (canonical) transfor-
mations U:H; — H;. To be more precise, if we transform
state vectors as 9; — ¥] = Uy, by virtue of the uni-
tary invariance of the measure D1, D] the correspond-
ing transformation rule for the probability distribution
reads

Pi[y1,t] = Pi[¢1,1] . (70)

As is easily shown, the transformed distribution Pj also
obeys the Liouville master equation (67) if, at the same
time, the system operators A; and the Hamiltonian H;
are transformed as

A~ AL =UAUY, H - H, =UmRU'. (1)

B. Construction of the realizations

of the stochastic process

The Liouville part of Eq. (67) given by the first term
on the right-hand side describes the rate of change of P;

due to the flow induced by the nonlinear (deterministic)
Schrédinger-type equation

.0 - i

ig¥1=GW) =Hig + 5 zi:’YillAﬂ/’lﬂfd’l - (72)

As is easily checked, the solution of Eq. (72) correspond-

ing to the normalized initial value 1;(0) = ; is given
by

C_iﬂltTZh

)= ———— .
P1(t) A

(73)

Thus we see that the time evolution is generated by the
non-Hermitian operator H, and that the nonlinear term
in Eq. (72) induces the constraint ||¢¢[|; = 1.

The master part of Eq. (67) (given by the second term
on the right-hand side) describes the rate of change of P;
due to discontinuous quantum jumps. The gain term rep-
resents the probability density per unit time for a tran-
sition from any state into the state 1/;, whereas the loss
term gives the probability density per unit time for a
transition from the state 1; into any other state. The
total rate for transitions from a given state 1; to any
other state is therefore

Tl = [ DoDUi Wil = S wlladallt . (74)

Let us assume that the state t; was reached through a
jump at time ¢. Due to the continuous time evolution
between the jumps, the total rate I' for the next transi-
tion depends upon the time 7 elapsed since the time ¢.
Inserting Eq. (73) (with ¢ replaced by 7) into Eq. (74) we
obtain after some algebra

d -
Dlgy, 7] = —— - Inle 12 (75)
According to the general theory of Markov processes (see,
e.g., Ref. [35]), the distribution function of the random
waiting time 7 is given by

Flr,7] = 1 — exp (— A ’ dsI‘['zZl,s])

=1—|le” 74|} . (76)

This waiting time distribution function F[1/;1,'r] repre-
sents the probability that the next jump occurs within
the time interval [t,t+ 7). Obviously, we have F[¢;,0] =
0. Since the norm in Eq. (76) is a monotonously decreas-
ing function of 7, the limit

Jim [l = q (77)

exists and thus F [1/;1,00] = 1 — q. In general, we have
0 < g <1. For g = 0 it follows that F[&l,oo] = 1.
This means that the next jump occurs with probability
1 in some finite time. However, if the non-Hermitian
part of H; has a zero mode it is possible that ¢ > 0. In
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this case, the so-called defect g [36] is to be interpreted
as the probability that after time ¢ no further quantum
jump occurs. We remark that this can be formulated
mathematically by adding the point co to the set Rt of
non-negative reals. This means that the space underlying
the random variable 7 becomes @ = R* U {oo} and the
defect g is the probability of the event 7 = oo.

The quantity Wv1|1¥1] denotes the probability density
per unit time for a transition from %, to ;. Since this
transition rate is given by a discrete sum of functional §
functions [see Eq. (65)] we have a discrete set of possi-
ble transitions: Under the condition that the state just
before the jump is given by )1, the transition

_ A
[|Astp1|]1

takes place with probability p; = ’y,~||A,-1/~11||"1’ JT[1]. Note
that 5, p; = 1.

Summarizing, we obtain a realization ;(t) of the
stochastic process defined by the Liouville master equa-
tion (67) by means of the following algorithm:

(i) Assume that the state v); was reached by a jump
at time ¢, that is, we have ¥, (t) = 1.

(ii) Determine a random waiting time 7 according to
the distribution function (76). This can be done, for ex-
ample, by drawing a random number 7 that is uniformly
distributed over the interval [0,1) and by determining 7
from the equation n = F['&/;l,T]. For n < 1 — g there
exists-a unique solution. For n > 1 — g we set 7 = oo.
Within the time interval [t,¢ + 7) the realization is then
determined by the continuous time evolution

P1 — Py (78)

6-iﬂ151/)~1
t+ =,
P1(t + s) le=Fegn Iy

For 7 = oo the algorithm terminates here.

(iii) At time t + 7 (if 7 is finite) one of the possible
jumps labeled by the index i [see Eq. (78)] occurs. Select
a specific jump of type 7 with probability

pi = %illAipr(t + 7 = €)|}/Tlr(t +7—€)]  (80)

0<s<rT. (79)

and set

Ai¢1(t+ T — E)
Apr(t+T7—¢)|l1’

Pi(t+7) = (81)

where the limit € — 0+ is understood.
(iv) Repeat these steps until the desired final time is
reached.

It should be clear that once an ensemble of realizations
has been generated according to this algorithm, any sta-
tistical quantity can be estimated as ensemble average.
As has been emphasized [37], the numerical implementa-
tion of this or similar algorithms may serve as a very effi-
cient method for simulating the dynamics of open quan-
tum systems. In fact, as has been demonstrated in a
different context [38], the stochastic simulation method
of complex systems described by master equations leads

to numerical algorithms that can easily be vectorized and
parallelized.

It is important to note that the above stochastic simu-
lation algorithm derived from the Liouville master equa-
tion (67) is very similar to the Monte Carlo wave function
simulation method proposed in Refs. [18,24-26]. The dif-
ference to these methods is that the realizations of the
stochastic process defined by our Liouville master equa-
tion are strictly confined to the unit sphere in Hilbert
space. This is due to the fact that we have introduced,
right from the beginning, the projective Hilbert space as
the phase space underlying the stochastic process. For
the same reason the continuous part of the time evolu-
tion is nonlinear in our case, the nonlinearity being re-
sponsible for the normalization of the state vector.

Apart from this different normalization, our analysis
thus implies that the piecewise deterministic quantum
jump methods proposed in the literature can be justified
from a general microscopic ansatz for the interaction of
the open system with the external reservoir. Note that
this has been achieved without referring to an equation
of motion for the density matrix of the reduced system.
In contrast, the equation governing the dynamics of the
reduced density operator can be derived from the above
Liouville master equation as the equation of motion for
the covariance matrix

pu(ar, ) = / DYy DY} 1 (21)93 () Paln 1] . (82)

In fact, differentiating (82) with respect to time and in-
voking the Liouville master equation (67) we obtain

7]

&Pt = —i[Hy + hy, pt) (83)

1 1
+Dom (A,-ptA,T — Al Aip — EptAIAi) :

This equation is exactly of the Lindblad form of the quan-
tum Markovian master equation [7,8] with Lindblad op-
erators A; and Hamiltonian H; + h;.

C. Diffusion-noise approximation

We shall demonstrate in this subsection that under cer-
tain conditions the diffusion limit of the Liouville master
equation (67) exists and yields a Fokker-Planck equation
that is equivalent to a stochastic Schrédinger-type equa-
tion. For the sake of a simple notation we assume in
the following that we have only one Lindblad operator A
and we omit the index 1 from all quantities that refer to
the reduced system S;. Furthermore, the Lamb shift is
included in the system Hamiltonian.

According to the general theory of stochastic processes,
a diffusion expansion of a given master equation can be
performed if the size of the transitions among the states
becomes arbitrarily small and if, at the same time, the
number of transitions in any finite time interval becomes
arbitrarily large. In order to formulate these conditions
we introduce a small (dimensionless) parameter € and
write the Lindblad operator as
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A=1+¢eC, (84)

where 1 denotes the identity operator and the operator
C is independent of €. Owur aim is to investigate the
behavior of the Liouville master equation in the limit
€ —> 0. On using Eq. (84) we obtain to second order in
€

G(¢) = Hy — %’y{l +e(Ct+C)+e2cicty

Fir{1+e(C 4 O)y +E(CO ) (85)

and
J

E) . 5 §
2PWi=i [ {Wx(w(m) e

Whirld] = v (1+(C" +C) 5 +£X(CTC)y)
x8[h — % +eM(@@) +N@E)],  (86)

where we have introduced the abbreviation (---), =
(3| ---|¥) and defined the nonlinear operators

M(y) = {c_ %(C*+C)¢}¢,
N('z/z)z—% {(C*C),,, - %(C* +C)3 +(Ct+ C),,,C} .

Inserting these expressions into the Liouville master
equation we obtain to second order

[K(¢)]*(x)} P, 1

(52

+l762/dw/dw’ —‘Sz——M(W(w)M(d))(m') *t Ssaovavsaran M@ (@) [M ()] (')
2 ()89 (') dyp*(z)6¢* (')

2

5 * !
P M @MO) @ )}P[1/1,t] . -

This is obviously a functional Fokker-Planck equation for
the reduced probability distribution. The nonlinear drift
operator K (v) takes the form

K(d’)=H1/)+%76{C—Cf}¢+i'yez{%(0f+C),,,C
—3(Ct+ 0 - 2cte by (85)
8 vo2 :

As can be seen from Eq. (87), the diffusion part of the
Fokker-Planck equation involving the second-order func-
tional derivatives scales as ye2. Thus, in order to obtain
a nonvanishing and finite diffusive contribution in the
limit ¢ — 0, we assume that the ¢ dependence of the
relaxation time v reads

y=e"%y. (89)

On the other hand, the drift operator (88) contains a
term that is proportional to ye = Je~!. This term di-
verges in the limit ¢ —» 0 unless we impose the condition
that the operator C is self-adjoint, that is, C = Ct. Us-
ing this condition we obtain for the drift operator

K($) = Hy + i {(c>,,,c ~ 50 - %02} v (90)

and the operator M () takes the form
M(y) = (C = (Cy) ¥ (91)

The Fokker-Planck equation (87) is equivalent to a cer-
tain stochastic Schrodinger-type equation. The noise
term of the latter is multiplicative since the Fokker-
Planck equation is nonlinear. Employing standard tech-

[

niques from probability theory we find that, under the
conditions just described, the Ito stochastic differential
equation corresponding to the Fokker-Planck equation
(87) is given by

gy =Ho+r{(0)sC - 3(0% - 0} v

+i7/2{C — (C)y}¥m(d) , (92)

where 7(t) is a real and Gaussian white-noise process with
zero mean and correlation function

(m(E)n(t')) =d(t—t'). (93)
It is interesting to note that Eq. (92) is of the same
form as the stochastic differential equation of the quan-
tum state diffusion model proposed by Gisin and Perci-
val [14] for the case of a self-adjoint Lindblad operator.
The only difference is that in our case the stochastic dif-
ferential equation contains a real instead of a complex
Wiener process (it has already been remarked in Ref. [39]
that the quantum state diffusion model also works with
a real Wiener process). The appearance of a real in-
stead of a complex white-noise process in the stochastic
Schrédinger equation indicates the fact that the diffusion
part of the Fokker-Planck equation (87) differs from that
of the Fokker-Planck equation given by Diési [15].
Summarizing, we have shown that the piecewise de-
terministic jump process defined by our Liouville master
equation leads, in fact, under certain conditions to a well-
defined diffusion limit. These conditions are the condi-
tion of small jumps (84), the scaling (89), and that the
Lindblad operator is self-adjoint. Of course, it is possible
to formulate other conditions and to perform different ex-
pansions of the Liouville master equation. Furthermore,
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we remark that, if several different Lindblad operators
are present, the diffusion limit may be valid only for a
certain subset of the them. In this case, the differential
Chapman-Kolmogorov equation takes on its most general
form containing a Liouville-master-Fokker-Planck opera-
tor.

IV. SUMMARY

The question that has motivated the investigation pre-
sented in this paper was the following one. Is it possible
to formulate a set of basic physical postulates and as-
sumptions that enables one to derive, directly from the
underlying microscopic dynamics and without referring
to a density operator description, a unique stochastic
process governing the dynamics of the states of the open
system? It has been shown above that this in indeed
possible. Let us summarize the basic postulates and as-
sumptions that have led to this conclusion.

(i) The starting point was a formulation of quantum
ensembles of closed and open systems in terms of proba-
bility distributions on projective Hilbert space. The lat-
ter may be obtained by taking the unit sphere in Hilbert
space and identifying states that differ by a pure phase
factor. Consequently, we have introduced probability
densities P[y] on Hilbert space that satisfy the three ba-
sic postulates given at the beginning of Sec. II and may
thus be regarded as distributions on projective Hilbert
space.

(i) When dealing with open systems that are con-
sidered as subsystems of some larger system, we need
a unique prescription that tells us how to compose two
statistically independent subsystems and how to reduce a
given system to one of its subsystems. This composition
and reduction has been formulated in terms of probability
distributions on projective Hilbert space. The obtained
equations take into account the basic rules of quantum
mechanics and they guarantee that the distributions for
the combined and for the reduced system are again distri-
butions on the corresponding projective Hilbert spaces.

(iii) The basic assumptions for the derivation of the
reduced system dynamics are the weak coupling assump-
tion and the validity of the Markov approximation. Note
that the latter is understood in the sense of classical prob-
ability theory, that is, it means essentially the truncation
of the hierarchy of multitime joint probability distribu-
tions on the level of the two-time joint probability distri-
bution.

(iv) We have made some technical assumptions, i.e.,
that the system operators of the interaction Hamiltonian
are eigenoperators of the system Hamiltonian with a non-
degenerate spectrum and that the diagonal elements of
the reservoir operators vanish in the representation of the
reservoir Hamiltonian.

All in all, these postulates and assumptions then led
to the conclusion that (i) the short-time structure of the
conditional transition probability implies the existence of
a differential Chapman-Kolmogorov equation and that
(ii) the latter takes on the form of a Liouville master

equation. The Liouville master equation uniquely de-
fines a stochastic process on the projective Hilbert space
of the reduced system. The realizations of this stochas-
tic process, which have been constructed in Sec. III, are
piecewise deterministic paths interrupted by discontinu-
ous quantum jumps. As is also explained in Sec. III,
these realizations are very similar to those generated by
the Monte Carlo wave function simulation methods pro-
posed in Refs. [18,24-26]. Moreover, the equation of mo-
tion for the reduced density operator is given by the equa-
tion governing the two-point correlation function of the
stochastic process.

The mathematical formulation of the stochastic pro-
cess in terms of a differential Chapman-Kolmogorov
equation allows us to perform definite asymptotic ex-
pansions. As an example, we have presented a diffusion
approximation of the Liouville master equation. This
yields a functional Fokker-Planck equation, which, in
turn, is equivalent to a stochastic Schrédinger-type equa-
tion. The latter closely resembles the stochastic differen-
tial equation of the quantum state diffusion model.

Concluding, we point out the following interpretation
of the stochastic theory developed here. The starting
point of our derivation has been the unitary time evolu-
tion according to the Schrodinger equation of the total
(closed) system. The essential step towards a stochas-
tic description is the enlargement of the formal setting
through the introduction of probability distributions on
projective Hilbert space. This enlargement immediately
leads to a Liouville equation for the probability distribu-
tion of closed systems. Our derivation then demonstrates
that the dynamics of an open subsystem is approximated
by a differential Chapman-Kolmogorov equation, which
defines a piecewise deterministic jump process for pure
states. This fact clearly reveals that the stochastic dy-
namics of the open system wave function is the synthesis
of the continuous Schrodinger-type evolution and the dis-
continuous quantum jumps of the Bohr picture.

APPENDIX: DETERMINATION OF THE
RESERVOIR CORRELATION FUNCTIONS

In this appendix we shall determine the reservoir cor-
relation functions

Ty = Zf.i}afigpﬁ ) (A1)
a,B

L= géapa, (A2)

th= N finfleps. (A3)

eg—ea €l

On using (41) we find

T T
Ty = / ds/ ds'ei(“’jal—“"s)(BJ(s - s")B;),
0 0
where the angular brackets denote the reservoir average

(BI(s)Bj) =) PalvalB](5)Bjlpa)2 -



440 HEINZ-PETER BREUER AND FRANCESCO PETRUCCIONE 52

. . . ,
Transforming to new time variables t = s — 8', t' = s’ we
obtain

T T—t' i
Ty = / dt’ / dteilwi—wdt —iwit(BI(1)B)) |
0 —t!

Since 7 > 7p the correlation function vanishes very fast
outside a small strip along the ¢’ axis. Thus we may
approximate

Ty ~ ( / dt’ei(“’f_“"’)t') ( / dte—i“’“(B;'(t)Bj)) .
0 —o0

If we assume that the frequency differences wj — w; are
large compared to A ~ 1/7, the first factor on the right-
hand side of this equation averages to 76;;. Thus we find

F,'j ~ T’)’,'(S.ij ) (A4)
where the inverse relaxation times are given by
y= / dte="* (B! (1) B,) . (A5)
Similarly, we find, on using Eq. (42),
5 T —t' . , .
Ty =- / dt' / dteiwi—wdt -t (gt By |
0 0
On using the same arguments as above we obtain
- 1 )
I‘ij ~ —T ('2"71. + 3Si> Jij , (AG)
where v; is given in Eq. (A5) and S; is defined by
+o0 . 1
/ dte“"""t(BJ(t)Bi) = E’Yi +1S; . (AT)
0

Finally, we find

T r—t'
k t(wj—w; ! —dw; k
Ik = /0 dt' / . det(wimwt —iwit ok gy |

where

Ck =

ij

> (eslBl(®)pa){palBjlos)ps -

eg—ea €l

Assuming again that C}} is sharply concentrated around
a small strip along the t' axis, we have

T ~ 763 / et Ck () | (A8)

Performing the time integration we find

[ eckn= %

-T eg—eq €Il

x(2a|B}|¢0a)(PalBiles)ps »

27D, (eg — €0 — w;)

where

1 sinwr
D,(w) = e

w

Obviously, lim,_, o D, (w) = §(w) and for large but finite
7 the function D, (w) is concentrated around w = 0 with
an effective width of order 1/7 ~ A. By virtue of the
assumption that the different intervals I} are well sepa-
rated (see Sec. III) we thus obtain

,
/ e_i“"'tCi’Z(t) = Ok E 2mD,(eg — € — w;)
-T a,
(#8|Bl9a)(@al Bilos)ps -
On the other hand, we have directly from its definition
T
v~ / e ™ (Bl(t)B;) = 27D, (ep — €0 — wi)
T a,B
*(¢p|Blpa)(pal Bilps)ps -
Comparing the last two equations gives
/ e ECE(t) = i
-T
which, on inserting into (A8), finally yields

F?j ~ T’yi(sij(s,'k . (Ag)
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